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The Efficiency of Excitation of a Surface Wave
on a Dielectric Cylinder
J. W. DUNCAN{

Summary—This paper presents a theoretical and experimental
study of the excitation of the lowest order TM surface wave on an in-
finite dielectric cylinder. The source is a circular filament of magnetic
current within the dielectric rod. The integral solution for the field is
evaluated as a contour integral by applying Cauchy’s theorem. The
far zone radiation field is obtained by means of a saddle point integra~-
tion. Curves are presented which show excitation efficiency as a
function of kea, the normalized circumferential length of the filament,
A filament 0.83 wavelength in diameter will launch the TM mode
with an efficiency of 95 per cent. A narrow annular slot in a large
metal sheet was used to approximate the magnetic current filament
and efficiency was measured using Deschamps’ method for a two-
port junction. The experimental measurements verify the theoretical
analysis. In addition, it was found that the slot launching efficiency
was essentially independent of the ground plane dimensions.

INTRODUCTION

NUMBER of papers published in the last decade
A have treated the mode characteristics of surface
waves on various types of open waveguides. Of
particular interest has been the utilization of such struc-
tures as surface wave antennas. A factor of prime im-
portance in all surface wave applications is the efficient
excitation of the desired mode on the guide. The excita-
tion efficiency of a source is defined as the ratio of the
power converted to the surface wave mode to the total
power which is delivered by the source.

In order to determine the excitation efficiency of a
source, one must solve the source form of Maxwell’s
equations which amounts to solving an inhomogeneous
wave equation. The usual technique of solving the differ-
ential equation is to apply the method of integral trans-
forms which yields the solution for the field in the form
of a definite integral. The integral is evaluated by con-
sidering it as a contour integral in the plane of the com-
plex propagation constant. The integrand has poles and
branch points in the complex plane. Applying Cauchy’s
theorem to the contour integral, the integral becomes
equal to the sum of the residues at the poles plus a
branch cut integral. The poles correspond to the surface
wave modes and the amplitude of a surface mode is
given by the residue of the integrand at the pole. The
branch cut integration yields the radiation field. Al-
ternately, the radiation field is obtained from the asymp-
totic evaluation of the integral by means of a saddle
point integration. This method of analysis yields the
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amplitude of the radiation field and of the surface mode.
One may then calculate the radiated power and surface
wave power and determine the excitation efficiency of
the source.

Cullen?! calculated the efficiency of an infinitely long
slot above a dielectric coated plane conductor. He also
treated the slot above a corrugated surface and a source
such as a gently flared horn. His theory predicted a
maximum efficiency of 85 per cent for the slot above
the coated conductor. Rich? attempted an experimental
verification of Cullen’s work and measured efficiencies
less than 20 per cent for the slot above the coated con-
ductor. Several factors may have contributed to the
difference in results.?*

Fernando and Barlow® considered a vertical dipole
source above flat reactive surfaces. A maximum effi-
ciency of about 80 per cent was predicted for a half-
wave dipole above a coated or a corrugated surface. In
order to estimate efficiency experimentally, they meas-
ured the amplitude of the radiation and surface wave
fields and substituted into the theoretical field solutions
to calculate the respective powers and efficiency. Good
agreement was obtained between the theoretical launch-
ing efficiency and the efficiency calculated from the
measured amplitude of the fields.

Roberts®” investigated the single wire transmission
line excited from a flanged coaxial cable. This source
launches the transverse magnetic, Eg mode on the wire.
He evaluated the input conductance of the coaxial line
by assuming an infinitesimal gap between the wire and
the outer conductor of the coax. The input conductance
is the sum of the radiation conductance G; and the
characteristic conductance Go. The excitation efficiency
of the source may be calculated from G; and &,. Roberts’
experimental work included measuring the input con-
ductance of the coaxial line for a number of different

1A, L. Cullen, “The excitation of plane surface waves,” Proc.
IEE, vol, 101, pt. 4, pp. 225-234; August, 1954,

2 G. J. Rich, “The launching of a plane surface wave,” Proc. IEE,
vol. 102, pt. B, pp. 237-246; March, 1955.

3 A. L. Cullen, “Discussion on the launching of a plane surface
wave,” Proc. IEE, vol. 102, pt. B, pp. 824-825; November, 1955.

4 R. H. DuHamel, “Discussion on the launching of a plane sur-
facse wave,” Proc. IEE, vol. 103, pt. B, pp. 787-788; November,
1056.

5 W. M. G. Fernando and H. E. M. Barlow, “An investigation of
the properties of radial cylindrical surface waves launched over flat
rezgctive surfaces,” Proc. IEE, vol. 103, pt. B, pp. 307-318; May,
1956.

6 T. E. Roberts, “Theory of the single wire transmission line,” J.
Appl. Phys., vol. 24, pp. 57-67; January, 1953,
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gap radii. The measured conductances were plotted on a
graph and the curve was extrapolated to obtain the con-
ductance of an infinitesimal gap, since it was impossible
to measure such a source experimentally. The extra-
polated value agreed quite closely with the conductance
predicted from theory.

Most of the papers on excitation efficiency which have
included experimental measurements have treated
sources placed near infinite planar structures such as
the dielectric coated conductor. Usually, it has not been
feasible to measure efficiency for these structures. It
seems worthwhile to apply the method of analysis to a
problem which will permit direct experimental meas-
urements of efficiency. The surface waveguide selected
for the problem is the dielectric rod. The source, which
has a simple physical realization, is the circular filament
of magnetic current placed inside the rod and concentric
with the longitudinal axis of the rod. One would expect
the current ring to be an efficient exciter of the lowest
order, transverse magnetic mode which can propagate
on a dielectric rod. This mode is known as the Ey mode.
The purpose of this investigation is to determine the
efficiency with which the magnetic current ring excites
the En mode and then to measure the efficiency experi-
mentally. The excitation efficiency is readily measured
using Deschamps’ method for calibrating a two-port
waveguide junction.

A similar problem has been treated by C. Jauquet,®?
who selected a magnetic current ring which was greater
in diameter than the dielectric rod. In his papers,
Jauquet obtains an integral solution for the field but
does not present any calculations of excitation efficiency.
His experimental measurements were concerned with
the phase velocity and radial distribution of the surface
wave mode.

MATHEMATICAL FORMULATION

The problem to be investigated is illustrated in Fig. 1.
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Q

Fig. 1—Infinitely long dielectric rod excited by a circular filament
of magnetic current located at 2=0.
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An infinitely long, dielectric rod of radius & is located
such that its longitudinal axis corresponds to the z axis
of circular cylinder coordinates (p, ¢, ). The rod is con-
sidered lossless, ¢ =0, with a magnetic permeability wug
and permittivity € =e¢.€, where €, is the relative dielec-
tric constant. The medium surrounding the rod and ex-
tending to infinity is free space, with constants ue and
€. The electromagnetic field source is a filamentary ring
of magnetic current located at the plane 2=0. The ring
is of radius a, where 0 <a <b, and is infinitesimally small
in cross section. The source distribution is represented
as a product of Dirac delta functions in the p and z co-
ordinates as follows:

K = $5(p — a)8(z) (n

where ¢ is a unit vector in the ¢ direction. The source
distribution K is independent of ¢ and is a unit source
such that

. a+A 0+A
ffKﬁdd =f f 8(p — a)8(z)dzdp = 1.
a—A 0--A

K has the dimensions of volts per square meter.

The electromagnetic field is a solution of Maxwell’s
equations. Written in differential form for ¢=** time de-
pendence, we have

= — {wek. 2)

Taking the curl of the second equation and then sub-
stituting the first relation for VXE yields

—VX VX H+ oluel = — iweK. 3)

The only non-zero component of K is the coefficient of
the unit vector ¢. We may write the ¢ component of the
vector equation (3) and obtain the nonhomogeneous
scalar equation

(—V X VX H|y+ 0ueHy = — iwed(p — a)6(z)

where the ¢ component of the bracketed term is indi-
cated.

The magnetic current filament generates a field hav-
ing components Hy, F,, and E,, while the components
E,, H,, and H, are equal to zero. Due to the symmetry
of the source, the field is independent of ¢ and we note
that all partial derivatives with respect to ¢ must be
zero. It is evident that the source produces a field which
is circularly symmetric and transverse magnetic with
respect to the z axis. Expanding the bracketed term in
cylindrical coordinates, we obtain the partial differ-
ential equation relating Hy{p, ) to the source

! aH¢+<k2 1>H+azy¢
a* o dp p2) " o
= — iweb(p — a)é(z) (4)

o°H,

where k%2=w?ue.
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From E=(1/— ) VX H, it follows that

1 0H,
Efp,2) = —— ——
we 9z
1 dH, 1
B D) = —— (S — 1), )
—iwe \ Op p

In order to solve (4) for Hy, we shall apply the method
of integral transforms to reduce (4) to a nonhomo-
geneous, ordinary differential equation. We define the
Fourier transform of Hy(p, 2) as

+%
h(p, §) = Hy(p, 2)e#dz. (6)
The inverse transform is given by
1 pt=
Hy(p,2) = P (p, )e¥eds. )
K

-

Assuming that the transform of Hy(p, z) exists, we mul-
tiply each term of (4) by ¢~%¢ and integrate over the in-
finite range with respect to z to obtain

a*h 1 dh 1
<k2—§'2*—">h= -
p?

+ — =+
dp*>  p dp

where the source variation 8(z) is no longer present since

+0

f 8(z)e®edz = 1,

—oe

We may consider (8) as an ordinary differential equa-
tion in which { is a parameter constant. The boundary
conditions on A(p, {) are obtained by taking the Fourier
transform of the original boundary conditions on
Hy(p, z) and 0H,/dp. The problem is one of solving (8)
for A(p, {) subject to the transformed boundary condi-
tions. H,(p, 2) is then obtained by use of the inverse
transform (7). The integral expression for Hy(p, 2) is
derived in the following section.

(8)

iwed{p — a)

SOLUTION OF THE BOUNDARY VALUE PROBLEM

Consider the form of the nonhomogeneous differential
(8). One could solve (8) using the Hankel transform;
however, the definition of the delta function allows one
to solve (8) in a simpler manner. The delta function is
defined by the relations

atA
f 8(p — a)dp = 1, and 8(p — ) = 0 for p 5 a.

—A

Consequently, for all p other than p=a, (8) reduces to
the homogeneous differential equation

&h 1 dh 1
+<k2—§2—-—>h=0.
o

@ 5 dp
The delta function §(p —a) implies a boundary condi-

— )
p dp
tion which &(p, ) must satisfy at p=a. Multiplying each
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term of (8) by dp and integrating over the interval 2A
from p=a—A to p=a-+A, one obtains

dh|atA 1 /dh

B _<_> do+ (k= 13 [ o

dplg—n p \dp
1 A 1 /dk atA

bt = [ (D)o= =ise [ o6 - o (10)
p a—~A p dp a—A

Assuming that k(p, {) is continuous for all p, in the limit
as A—0 and p—a, (10) reduces to

dh dh

dplurs  dp

a—A

(11)

— {we,

a+4

We have shown that a continuous %(p, {) which satis-
fies the homogeneous equation (9) and whose first deriv-
ative is discontinuous by —iwe at p=a is a solution of
(8).

The remaining boundary conditions on %{p, {) follow
from the boundary conditions imposed on Hy(p, 2) and
E,(p, 2) by Maxwell’s equations. Referring to Fig. 1,
we denote the cross-sectional area of the rod as region [
and the space outside the rod as region [I. Since tan-
gential H is continuous at a magnetic current discon-
tinuity, we see that Hy(p, 2) is continuous at p=a for
all z including the filament position z=0. Since tan-
gential £ and T are continuous across a dielectric
boundary, we note that H;(p, 2) and E,(p, 3) must be
continuous at p="> for all z. The corresponding condi-
tions on %(p, ¢) are

1) H,(p, ) continuous at p=a for all z implies that
o0

Hy(p, 2)e %2ds

o0

hip, §) =

must also be continuous at p=a, hence

h(ﬁ) g‘) IG—A = h(l’; g‘) IIH-A'

2) Similarly, since Hy(p, 2) is continuous at p=> for
all g,

(12)

Ip, §) |b-s = H(p, £) losa-

3) From (5) we write

1 dH, 1
- —— -t —Hy).
— twe \ Op p

In region I, where 0<p<b, the permittivity € =¢.€. In
region II, where p>b, e=¢. E.(p, 2) continuous at p=25
for all z requires

(13)

E.(p, ) =

OH 1 dH, 1
1 =e +—H,) .
dp p bA dp p TPy
Taking the transform, we obtain
dh ah 1
6| —=| H(e—D—K =0 (14
dplera  dple-a P loya

by reason of (13),
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In order to determine Hy(p, 3) in region 1, we must
solve (8) for the corresponding %(p, {). Inside the dielec-
tric rod, for all p except p=a¢, (8) becomes

@k (1)

where %12 =w2u¢e;. Outside the dielectric rod and for all
p, (8) becomes

d2h+1 dlz_l_(kz . 1)} 0
it 2ot )=
dp*  p dp o

(16)

where ko2 =wuy€.

We proceed by writing general solutions %(p, {) of
(15) for the regions 0<p<a, and a <p<b. The discon-
tinuity at p=a appears in the boundary condition (11).
A general solution of (16) yields &(p, {) for the region
p>b. The three solutions possess six arbitrary constants.
The constants are determined from the requirements
that the field be finite at p =0, that the field be regular
at infinity and that it satisfy the radiation condition,
and the four boundary conditions (11), (12), (13), and
(14). Choosing the solution k(p, {) for region II, the in-
verse transform (7) must then be evaluated to yield
Hy(p, 2) for p=b.

Eq. (15) is recognized as a form of Bessel's differ-
ential equation. It has the general solution

W, £) = AJ1(v1p) + PY1(v10)

where A4 and P are arbitrary constants, Ji(rp) and
Y1(v1p) are Bessel functions of the first and second kind,
respectively, and

V12 — k12 — §-2.
Consider the region 0<p<a. Since Hy(p, z) and, there-

fore, 2(p, {) must be finite at p=0, we determine that
P =0, since Y1(yip) is unbounded as p—0. Hence,

h(p, §) = AJ1(v1p) (17)
where

v = Vki? — {?

0<p<a

For the region a<p<¥b, the Yi function must be in-
cluded, and we have

k(p, §) = BJ1(vip) + CY1(v1)p.

A general solution of (16) is written in terms of
Hankel functions of the first and second kind

h(pJ §‘> = DHI(I)(VOP) + QHl(Z)(V0p>

(18)

where
vo = Vot — (.

I't will be seen later that, in general, »¢ is complex; there-
fore we define the argument of vy to be 0 <argr, <. As
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p— w0, Hi®(vy) vanishes and H;?(pop) is unbounded
for the defined argument of »,; therefore, Q =0 and we
obtain

k(p, §) = DH1®(vop) (19)
where
vo = EF s O_<_arguo_<_7r.
p=b

In order to solve for the arbitrary constants 4, B, C,
and D, we apply the boundary conditions (11), (12),
(13), and (14) to the appropriate solutions (17), (18),
and (19). Omitting the details, the following four equa-
tions are obtained:

—~ (b)) AT (v1a) + (b)) BJ (v1a) + @:b)CY (v1a)
= — jwerb
AJi(v1a) — BJi(via) — CYi{(via) = 0
BJ1(v1d) + CY1(vd) — DH W (veb) = 0
(n10) BT (118) + (#10)C Y+ (b)
— Dle(vod) HY D (ved) + (e — 1) H1D(ved)] = 0. (20)
This system of equations was solved by finding the in-

verse of the coefficient matrix. The constant D was de-
termined to be
J
D=iwea 1a) .21
(Vlb)Jo(Vlb) Hl(l) (Vob) _— 6,(1/0[))]1(1/16) Ho(l) (Vob)

Substituting (21) into (19) we obtain %{p, {) for the re-
gion p>b. The solution %4{p, {) is then substituted into
the inverse transform (7) to yield the integral expression
for Hy(p, 2) in region II. This result is

iwera

H¢(p, Z) = 2

™
f+°° ]1(V1(Z)H1(1)(Vop)6irzd§' (22)
—c0 (Vlb>]0(lllb)H1(1)(Vob) - Er(vob)fl(Vlb) Ho(l) (Vob)

where

v = Vk®— (% vo = Vke? — §?

and

p = b.
SINGULARITIES OF THE INTEGRAND-—SOLUTION
orF THE MoDE EQuATION

We wish to evaluate the real infinite integral (22).
This is accomplished by considering it as a contour in-
tegral in the complex { plane and applying Cauchy’s
residue theorem. The path of closure in the complex
plane is selected to ensure convergence of the integral.
Evaluation of the contour integral is treated in the {fol-
lowing section. For the present we shall consider { com-

plex and determine the singularities of the integrand of
(22).
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Branch Points

Consider the variable vy which appears in the argu-
ments of Jy and Jy in (22). Since vi=+/k2—{2, then »;
is multiple-valued in any neighborhood of {= Lk
However, if one considers the power series expansions of
Jo and Ji, one sees that the integrand is an even func-
tion of », so that the points {= +%; are not actually
branch points. The Hankel tunction arguments contain
the variable vo=+vkg?—¢2 The Hankel function has a
logarithmic singularity at »y=0, and so is multiple-
valued in any neighborhood of {= +k,. The points
+ &, are, therefore, branch points of the integrand. We
select branch cuts in the { plane as shown in Fig. 2. We
note that k2 =w2ue is real. Thus, the points %, and the
+ ko lie on the real axis with l kll > l ko‘ since € > €. The
branch cuts are defined as { = +k¢+7¢ Im ¢.

M€

€ PLANE

RE 8

Ko CSC €

5 5=Ko SIN G

Fig. 2—Contour of integration in the { plane.

Poles

Before we investigate the integrand of (22) for poles,
we shall discuss the significance of a pole in the physical
problem. Assume that the point {=¢{, is a pole of the
integrand. When (22) is evaluated as a contour integral,
a residue contribution at ¢y must be included. Thus,
Hy{p, %) will have a term of the form

AHl(D(Vop)el{U:. (23)

Since we assumed a lossless dielectric rod by taking
k12 =w2uee; real, we will expect (23) to represent a wave
propagating without attenuation, which implies that
{o is real. If ¢ is real and ml >|k01, then vy is pure
imaginary and Hi®(vep) reduces to the Ky Bessel func-
tion which decays exponentially with increasing argu-
ment. Under these conditions, (23) represents a surface
wave of amplitude 4, whose field distribution outside
the dielectric rod is an exponential decay. The wave
propagates in the positive z direction according to
e~iet+) The poles of the integrand are those values of
¢ which cause the denominator of (22) to vanish. Equat-
ing the denominator of (22) to zero yields

](](Vlb) HO(I)(Vﬂb)

(1b) ——— = &(vob) m

J1(w1b) 24
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For convenience of notation, let Xi=wib and X,=w.b;
then (24) may be written

Jo(Xy)

HoM(X,)
s = .
Ji(Xy)

o H,O(X,)

& (25)
It can be shown that the only values of real { for which
(25) can be satisfied are for { in the range lkOJ <|§‘[
< I k1[ .10 Recalling that 1 =+%2—¢? and vo=+/k2—{?,
where k> ko?>0, consider { real and | ko <|¢| <] AR
Then », is real and v, is pure imaginary. It follows that
X, is real and X, is pure imaginary. Let Xo=1£, where
£ is positive real. Eq. (25) becomes

Jo(X 1) _ o HoW(iE) B Ko($)

GO R I AC)

where the K, functions are modified Bessel functions
of the second kind.

A graph of the functions — X1 [Jo(X)/Ti(X1)] and
e£[Ko(&)/Ki(£)] is presented in Fig. 3. The function
—X1[Jo(X1)/J:i(X1) ] is discontinuous each time J1(X71)
vanishes and so an infinity of branches occur for ever
increasing X. It passes through zero each time Jo(X71)

10 7
A
/
8 4 (X}
ey JetX
/] =%y
4 Ko(8)

”‘”"9»?7@)"'

Fig 4 7 I

F(Xy) ,/ / /
7/

!

v
Vd
/ /
o 2/ G 3
/ £ and X, /

/

Fig. 3—Graph of the functions F(X,) and F(£). The transcendental
mode equation is F(X1)= F(£).

&(— (26)

-2

has a zero. The function e£[Ko(£)/Ki(£)| approaches
zero as £—0 and increases positively for increasing £. It
is evident in Fig. 3 that for every finite £, an infinity of
values X; exist which satisfy (26). In order to obtain a
finite number of unique solutions of the mode equation,
a second relation between X and £ is needed. It follows
from the definitions that

vt = k2 — 2
vo? = k? — (2

where ¢ is identically the same in »; and »,. Elimination
of {? yields

2r\?
vi? — v = ki’ — ko = <T> (& — 1)

0

 J.'W. Duncan, “The Efficiency of Excitation of a Surface Wave
on a Dielectric Cylinder,” Antenna Lab., Elec. Eng. Res. Lab.,
Eng. Exper. Station, University of Illinois, Urbana, Ill., Tech. Rep.
No. 32, pp. 20-22; May, 1958.
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where Ag is the free space wavelength corresponding to
the source frequency. Multiplying by 5?2 yields

2wbh\?
(md)2 — (vob)? = X312 — X2 = (——) (& — 1).
Ao
Since Xy=1£, we obtain the second relation between X;
and £, which is

X+ g = R @7

where

2wh — N
R = (~—) Ve — 1 = kipvVe — L.
1]

The graphical solution of (26) is illustrated in
Fig. 4, which includes curves of X; as a function of &
obtained from Fig. 3, and the relation (27). Note that
(27) is the equation of a circle of radius R with center at
the origin. The multiple solutions X\ for every £ as dis-
cussed with Fig. 3 are evident in Fig. 4. The first branch
of X, starts at X;=2.405 for £=0 and approaches
X1=3.83 asymptotically with increasing £ X;1=2.405 is
the first zero of J¢(Xy) and X;=23.83 is the first zero of
Ji(X1). The second branch commences at 5.52 and ap-
proaches 7.02, which corresponds to the second zeros of
Jo(X1) and Ji(X,), respectively. An infinity of branches
is thus established.

|

MODE SOLUTION (&, X,

.
T
A
1

o I

3 4 5 6

£

Fig. 4—Solution of the mode equation: Xy as a function of £
which satisfies F(X;)= F(£), and the relation X2-+£=R2

Consider the case R<2.405. Since X1=+/R2—£2<R,
Fig. 3 shows that (26) cannot be satisfied for X;<2.405,
that is, no solution of the mode equation exists for
R <2.405. This is also evident in Fig. 4. Physically, this
means that the dielectric rod waveguide is below cutoff
and cannot propagate a surface wave of the transverse
magnetic type.

Referring to Fig. 4, if 2.405 < R <5.52, a single, unique
solution (£, X1) of (26) and (27) results. Thus, (22) has
poles at ¢ = * o, where {, may be determined from the
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solution (¢, X,). The poles occur on the real axis in the
region | ko] <|¢] <|ki|. We see that when R is restricted
to the range 2.405 <R <5.52, the dielectric rod propa-
gates a single surface wave which is the lowest order,
circularly symmetric, transverse magnetic- mode. It is
known as the Ey mode and propagates as e%o for 2> 0
and e~%o* for 3<0.

Solution of the Mode Equalion

Specific solutions of (26) and (27) are required in order
to calculate the power in the surface wave and excitation
efficiency. A value of 2.56 was chosen for e,, the relative
dielectric constant of the rod. R was restricted to the
range 2.405 <R <5.52. Egs. (26) and (27) were solved
by numerical methods on the University of Illinois digi-
tal computer.!! Six solutions (¢, X1) were obtained for
selected values of k¢b equal to 2.2, 2.6, 3.0, 3.4, 3.8, and
4.2,

Table I presents &, X1, and the ratio \,/Ay correspond-
ing to each value of k¢b. N\, is the guide wavelength of
the surface wave mode. The ratio \,/\, follows from the
definition of w,.

A 1
. : (28)
Ao £E\?
14+ [—
kob
TABLE T
kb £ ’ X, } Aoho
2.2 0.5603 2.6901 0.9691
2.6 1.2320 3.0043 0.9036
3.0 1.9353 3.2086 0.8403
3.4 2.6260 33366 0.7913
3.8 3.2905 3.4204 0.7560
12 3.9264 3.4783 0.7305

EvarvaTtioN oF THE CONTOUR INTEGRAL

We evaluate the integral solution (22) by considering
it as a contour integral in the complex { plane. For con-
venience we write (22) in the form '

4
Hylp, 2) = U@)ds (29)
where
U _ iwela
) -
]1(1’1(1«)[11(1)(1/0[))67;“
) (Vlb)]o(vlb)yl(l)(llob) - ér(Vob)]l(lﬁb)Ho(l)(Vob)
n= VET =
vo = Vot — &2

To obtain (29) we select the closed contour shown in
Fig. 2, which consists of the real axis from —R to +R,
the circular arc R; of radius R, the path I' along the

it J. W. Duncan, op. cit., pp. 83-105.
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branch cut and imaginary axis, and the arc R,. Applying
Cauchy’s residue theorem, we write

+R
f U@)ds + +f+
—R Ry T Ra

= 27t Residue U(¢) | . (30)

$o

In the limit as R— =, the integrand U({) vanishes along
Ry and R, so that (30) becomes

“+o0

Hy(p, 2) U)ds

—%

271 Residue U({)

It

-fvma.<w
to r

The residue term of (31) is the surface wave field while
the integration along I' yields the radiation field. Evalu-
ation of the line integral along T' is extremely difficult.
It is sufficient for our purposes to obtain an approxima-
tion to the far zone radiation field. Under these condi-
tions the coordinates p and z in U({) are relatively large
and the integral is of the type which may be evaluated
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where

T =y -+ i

Now 7=sin"! ({/k¢) is a multiple-valued function of {
and the region of integration in the { plane transforms
into a strip in the 7 plane which is bound by two curved
lines corresponding to the branch cuts in the { plane.
They are defined by

sin ¢ coshy = + 1, (34)

The path of integration along the real axis in the { plane
transforms to the path Ci in the 7 plane as shown in
Fig. 5. The branch points {= 4%, transform to the
points 7= + /2 while the images of the poles +{, are
the points 7o=m/2—1 cosh™ ({o/ks) and 7o= —mu/2
44 cosh™! ({o/ko). The transformation (33) yields

~+ ko cos T
+ ko\/er - S;Hz_T = kow

Vo =

(35)

V1

where for convenience we let w, a function of 7, repre-
sent the radical v/e¢,—sin? 7. Substituting (33) and (33)
into the integral [c,U({)d{, one obtains

Ji(koaw) H, D (kop cos 1)etho? 510 7 cog rdr

H¢(p, Z) =

by the saddle point method of integration.'? Instead of
integrating along the path I' we deform I into the path
of steepest descent C, which passes through the saddle
point of the integrand. The path C;, which is directed
in the reverse sense to I', is shown in Fig. 2. Thus, (31)
may be replaced by

iwera
27h fcs 0] o(kobw) H1V (kob cos 1) — € cos 7.J 1 (kobw) Hy D (kob cos 1)

(36)

If p is large and kop cos 750, the Hankel function in the
numerator of (36) may be replaced by its asymptotic
representation. Furthermore, it is convenient to in-
troduce the spherical coordinate system shown in Fig.
6, where the polar angle 6 is measured from the plane
z=0. In this coordinate system we note that p=r cos
and z=r sin . Substituting for p and z in (36) and re-

Hylp, %) = 2i Residue U(¢)| + U@ds  (32) placing the Hankel function by its asymptotic formula
’ to Cs yields
Hlr 6 iwe1a RN 7 )|: 2cosT ]1/2 " _— 37
= —1loT — gihar cos (r— T
o1, 0) 2rwh ‘ Cs . wkor cos 8
where
Jl(kod‘w)

F(r) =

which is the desired form of the solution Hy(p, 2) in re-
gion II.

The Radiation Field

We shall nowevaluate the integral f¢, U({)d{ by means
of the saddle point method of integration. In applying
this method it is convenient to introduce the transfor-
mation of variable

§' = ko sin 7 (33)

2 E. T. Copson, “Theory of Functions of a Complex Variable,”
Oxford University Press, London, Eng., pp. 330-331; 1955.

w7 o(feobw) Hy D (keb cos 1) — € cos 17 1(kabw) Ho® (keb cos 1)

Integral (37) is valid for r large and k¢ cos 0540. It is
readily evaluated by the saddle point method. The
saddle point is defined by the equation
=0

d
- cos (1 — 6) (38)

T

which yields
T = 0.

(39)

Note that the saddle point corresponds to the polar
angle 8. In the { plane the saddle point is

¢s = ko sin 6. (40)
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The path of steepest descent C, in the 7 plane is defined

by the equation

sin (¢ + 7/2 — 6) cosh g = 1. (41)
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Fig. 6—Cylindrical coordinate system (p, ¢, 2) and
spherical coordinate system (7, ¢, 8).

Carrying out the evaluation of (44), one obtains
H(p, ) = AuK(§p/b)e?o" (45)

where

a kod
(503 )
b kob

A =

3

2(R/)?
£ °b{ . X,
tob = (kab)? F €

R = X2 4 g

The shaded area of Fig. 5 is the region of convergence of

the integral (37) as n approaches + « on C..
Carrying out the evaluation of (37), one obtains

Jo(X1) K1(§) + [Er <—*> + (%):l Jo(X1)KoE) + (& — 1)11(X1)K1(E)}

The other surface wave components in Regions I and 11
follow from Maxwell’s equations. They are

i, 2) = (i> H(p, 2)
fen tkor weo
AL fhind e K
B, 0) = = Mu(wb)F @ (42) (o, 5) = dux 2= (1}((1) Ti(Xsp/D)eison
I
where E p, z) = ("w—:) H(p, 2). (46)
J1(koa‘w)

F ()

It follows from Maxwell’s equations that

&a eikor
Eo(r,0)=—1:( b)F(B) .

w 7

(43)

The Surface Wave Field

Let Hy11(p, 2) represent the surface wave field in re-
gion II. It is given by

HyY(p, 2) = 2xi Residue U(¢) |;, (44)
where

p =0, z > 0.
The pole o is a simple pole since the denominator of

U(f) vanishes at { but its first derivative does not.

T o(Bobw) Hi O (Bob cos 6) — e, cos 6J1(kobw) Ho® (kb cos 6)

TuE PoweRr INTEGRALS AND ExcITATION ERFICIENCY

The radiated power WZE is obtained by integrating
the average Poynting vector over the surface of a large
sphere of radius 7. The radiation field, which has com-
ponents Fy and Hy, is independent of ¢ and is symmetri-
cal about the plane #=0. The integral for the radiated
power is

e fea)\? 1 w/2
WE = 1/~ —f cos 8| F(6) |2d0
so\ D w/2J

where F(0) is defined in (42). )
A discussion of the integrand of (47) is worthwhile at
this point. We note that the magnitude of the radiation

(47)



1959

field is proportional to !F(B)I. As 8 approaches 7/2,
F(f) vanishes so the radiation pattern has a null along
the axis of the dielectric rod. The influence of the source
dimension (ko2) on the radiation field and WZ is con-
tained in the function Ji(keaw) which is the numerator
of F(6). The dielectric rod parameter (ko) appears only
in the denominator. In order to obtain maximum ex-
citation efficiency for any k¢b, W2 should be a minimum.
WE will be a minimum if Jy(kaw) vanishes or is quite
small as 6 ranges from zero to m/2; this occurs when
Ji(keaw) passes through a zero. Consider the function
w=1+/¢,—sin? § with €=2.56. As 6 takes on values
0<0<Lw/2, w has the range 1.25<w<1.6. Assume an
average value for w, w,,=1.42. We should expect the
most efficient source to have the approximate dimen-
sion kea=3.83/w,,=2.7, where 3.83 is the first zero of
the J; function. This analysis is verified in the efficiency
curves presented in the latter part of this section.

The integral (47) was evaluated numerically on the
University of Illinois digital computer. W% was com-
puted as kqe varied in discrete increments of 0.2 over
the range 0 <koa <kob for a particular value of k. The
results of these computations appear in the efficiency
curves.

The surface wave power W# is obtained by integrat-
ing the average Poynting vector over the surface of an
infinite transverse plane normal to the z axis. Since the
surface field components E, and H, are different for re-
gions I and II, separate integrations are necessary for
the regions 0<p<b and p>b. The resulting expression
for the total surface wave power is

€ /ea\?
Ws = V~< ) NS
po\ b
where

(48)
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WS
T=——
WT

where W¥ is the surface wave power.

WT is the total power delivered by the source.

Goubau® has proved that, for lossless surface wave-
guides, the radiation and surface wave fields are orthog-
onal with regard to power considerations. In this case,
the total energy delivered by the source is equal to the
sum of the surface wave power and the radiated power.
Since we are considering a lossless dielectric rod, the
orthogonality condition holds and T is given by

ws
T =
WS _I_ WR
where W% is the surface wave power and WZ is the
radiated power.

Efficiency was calculated according to (50) using com-
puted values of W8 and W=, Figs. 7 and 8 present curves
of efficiency as a function of ke for the selected values
of k. Efficiencies greater than 90 per cent are pre-
dicted for k¢ approximately equal to 2.6.

(49)

(50)

EXPERIMENTAL INVESTIGATION

The magnetic current ring was purposely chosen for
the theoretical problem because it is a source which has
a simple physical realization. Consider Fig. 1. By sym-
metry the magnetic current filament generates a field
which has no electric component in the plane z=0. In
the plane of the source the only non-zero component of
E is E,, which is normal to the plane. Since tangential
E vanishes over the plane, an infinitely large metal sheet
may be placed at the source position without disturbing
the field. One may simulate the source by a very narrow
annular slot in a large conducting sheet or ground plane.

2 2
7000 + 700 = & rceanen |+ [ ke - k2@ + = KR |}

koa

T)‘O 2[(%)24_1

__3(_1_____

Inspection of IN® shows that the source dimension (kya)
appears only in the argument of J:2[(koa/kob)X1]. The
remaining portion, which is rather formidable, is a func-
tion of ¢, and the mode solution (£, X;). It hasa constant
value for any ¢ and k¢b. NS is a function of the source
only by the term J:2[(koa/keb)X1]. It should be noted,
however, that a/b appears in the constant which multi-
plies N® to give WH5. Selecting a value of kob with
e.=2.56, WS was calculated according to (48) as a func-
tion of k¢a using values of A;/Ny, & and X from Table I.

Excitation Efficiency

The efficiency with which the source delivers power
to the surface wave is called the excitation efficiency of
the source. Denoting efficiency by the symbol 7T, it is
defined as

}J(,(Xom(s) +[« (Xi) + ()‘

e (%)
2 * g X

)] ToENKo®) + (& — DIEDNE)

Then, of course, the dielectric rod extends from the
ground plane in only one direction. The annular slot
may be illuminated using a circular or coaxial wave-
guide exciter. If the rod is terminated in a resistance
card load which produces negligible reflection of the sur-
face wave, then the finite rod excited by an annular slot
in a ground plane simulates in a half space the theoreti-
cal problem of Fig. 1.

In order for the slot to be a good approximation of
the filament, the slot width must be small compared to
the wavelength and the electric field in the slot must be
radial and uniform about the circumference. It is as-

1 G. Goubau, “On the excitation of surface waves,* Proc. IRE,
vol. 40, pp. 865-868; July, 1952.
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sumed that the mean radius of the slot corresponds to
the radius of the infinitesimal current filament. The slot
may be illuminated from a circular waveguide propagat-
ing the TMy; mode, or from a coaxial line excited in the
usual TEM mode. The coaxial line is preferable since
the center conductor provides a convenient means of
supporting the circular disc which is the ground plane
within the annular slot.

The efficiency with which the slot excites the surface
wave may be measured using Deschamps’ method for
determining the insertion loss of a waveguide junc-
tion.’15 The transition from the coaxial line to the di-
electric rod waveguide is considered as a two-port wave-
guide junction. Assuming that the dielectric rod and
coaxial line are lossless, then the dissipative attenuation
of the junction results entirely from the power radiated
into space by the slot. If all of the power delivered to
the slot is converted to the surface wave, then no power
is lost as stray radiation and the junction is 100 per cent
efficient. This method has been used previously to meas-
ure the launching efficiency of sources placed on a di-
electric image line.16

. M G. A. Deschamps, “Determination of reflection coefficients and
insertion loss of a waveguide junction,” J. Appl. Phys., vol. 24, pp.
1046-1050; August, 1953.

% H. F. Mathis, “Experimental procedures for determining the
efficiency of four-terminal networks,” J. Appl. Phys., vol. 25, pp.
982-986; August, 1954,

. ¥ R. H., DuHamel and J. W. Duncan, “Launching efficiency of
wires and slots for a dielectric rod waveguide,” Trans. IRE, vol.
MTT-6, pp. 277-284; July, 1958.
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Fig. 9—Representation of the two-port junction.
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Fig. 10—Cross section of the coaxial exciter,

A schematic representation of the arrangement used
to measure the efficiency of the junction is given in
Fig. 9. The measurements were performed using a
2-inch diameter polystyrene rod mounted vertically on
a 60-inch square ground plane. For most of the meas-
urements the dielectric rod was 40 cm long, although in
some instances, the length was increased to 134 cm.

Using Deschamps’ method, one obtains the efficiency
of the entire transition between the input reference
plane and the output reference plane, that is, between
the measuring probe and the short circuit termination.
Since we are interested in measuring the dissipative at-
tenuation of just the annular slot, it is essential that the
rest of the transition shall introduce only negligible at-
tenuation. For the present we shall ignore the dielectric
rod loss since it is very small. It follows, then, that a
low loss exciter must be constructed to illuminate the
annular slot. The annular slot presents a very low con-
ductance and capacitive susceptance to the exciting
waveguide. Therefore, the feed waveguide must be a
low impedance line with some means of tuning out the
capacitive susceptance of the slot at the ground plane
position.

Fig. 10 shows a cross sectional view of the low im-
pedance coaxial line which was constructed for this
purpose. The inner diameter of the outer wall of the
coax was 1% inches and the inner conductor diameter
was 1% inches, which yields a 24-ohm line. A two wave-
length tapered section transformed the 24-ohm line to a
standard 50 ohm, type N connector. Two polystyrene
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rings centered the inner conductor within the cylinder.
The ring at the ground plane position was a quarter-
wavelength transformer which would match the 24-ohm
line to a 9.5-ohm resistance load. A circular tuning disc
or washer was placed on the end of the center conductor
to provide a series inductive reactance to cancel the
capacitive susceptance of the slot. The circular disc
which formed the inner boundary of the annular slot
was fixed to the.tuning washer and the coax center con-
ductor by a special mounting screw. Since the neighbor-
hood of the annular slot and tuning washer is a resonant
cavity, all parts were silver-plated to minimize losses.

A family of discs and rings were fabricated to permit
varying the annular slot radius from i-% inch while
maintaining the slot width constant at } inch. The %
inch slot width corresponds to .067 Ay and .076 Ay at
kob equal to 3.4 and 3.8, respectively. Recalling that the
radius of the dielectric rod is 1 inch, it is convenient to
express the slot radius in the normalized form a/b; then
the source dimension ke for any kb is given by keb(a/b).
Six slots were constructed for the measurements. Table
II gives the normalized slot radius a/b, and the corre-
sponding dimension kee at the two values of kob which
were used for the measurements.

TABLE 1II
Normalized Slot kot koa
Radius a/b When k¢b=3.4 When kob=3.8
0.50 1.70 1.90
0.625 2.12 2.38
0.687 2.34 2.61
0.75 2.55 2.85
0.812 2.76 3.08
0.875 2.98 3.32

A slot { inch wide and 2 inches long was milled in the
side wall of the exciter so that the standing wave ratio
in the exciter could be measured. After a particular slot
was mounted on the exciter, various tuning washers
were tested until one was found which reduced the
VSWR in the exciter to less than 2 when the dielectric
rod was terminated with a matched load. The image
circle was determined from measurements made in a
coaxial slotted line which was connected directly to the
exciter through a type N elbow connector.

When efficiency was measured as shown in Fig. 9, the
result obtained was not precisely the excitation effi-
ciency of the annular slot; instead it was the efficiency
of the entire transition between the measuring probe and
the short circuit termination. Although the losses in the
system were small, the measured efficiency was reduced
somewhat by the dielectric rod attenuation and by the
loss between the measuring probe and the ground plane.
The system losses were measured approximately by
means of Deschamps’ method.'” The measurements of
slot launching efficiency were then corrected to-account
for the system losses.

17 Duncan, op. ¢it., pp. 66—72.
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Fig. 12—Comparison of the theoretical and
measured excitation efficiency.

Six slots were measured in the laboratory. Measure-
ments were performed at frequencies of 6387 mc and
7138 mc which result in kob equal to 3.4 and 3.8, re-
spectively. The results are presented in Figs. 11 and 12
for comparison with the theoretical curves of efficiency.
The data include the measured efficiency T and the coi-
rected efficiency T. for each source koa. The very close
agreement between the experimental points and the
theoretical curve is evident. In all cases the measured
efficiency T, which included the system losses, was with-
in 10 per cent of the efficiency predicted by theory. The
experimental measurements verify that an excitation
efficiency of approximately 95 per cent may be obtained
from an annular slot of dimension kg =2.6.

It should be emphasized that a good “matched”
transition is necessary in order to realize the high effi-
ciency of the annular slot. In the laboratory the pre-
dicted source efficiencies were not measured until the
matched transition of the coaxial exciter was con-
structed. Of course, the efficiency of the annular slot is
independent of the feed structure, but substantial
coupling of power from the closed waveguide to the sur-
face waveguide is obtained only when a good impedance
match is provided at the aperture plane. Otherwise, a
very high standing wave ratio exists in the vicinity of
the aperture and most of the power delivered by the
feed waveguide is reflected.

As a point of practical interest, the efficiency of the
annular slot in the presence of a small ground plane was
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determined. This effect was investigated by measuring
slot efficiencies as the size of the ground plane was re-
duced. Surprisingly, the ground plane dimension had
little effect on the efficiency. At least, this was the case
at the two values of kb which were considered. The
ground plane was reduced to a 10-inch diameter flange
and no appreciable change in efficiency was noted. Con-
sequently, the ground plane was removed so that the
launching structure consisted of the dielectric rod
mounted on the coaxial exciter. Efficiency was meas-
ured at kob equal to 3.4 and 3.8. The results are pre-
sented in Table IIT which includes, for comparison, the
efficiency that was measured with the large ground
plane. Note that these data have not been corrected to
account for the system losses.
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Proposal for a Tunable Millimeter Wave
Molecular Oscillator and Amplifier

J. R. SINGER}

Summary—An atomic beam apparatus suitable for a millimeter
wave generator is theoretically discussed. The beam consists of
atoms having a net magnetic moment. The upper and lower Zeeman
levels of the atomic beam in a magnetic field are spatially separated
by an inhomogeneous magnetic field. The upper state atoms enter a
cavity where transitions occur at a frequency determined by a static
magnetic field. The resonant frequency of the cavity is set at the
transition frequency. The positive feedback of the cavity allows
operation as an oscillator. Some of the more important parameters for
oscillator operation are evaluated. The upper frequency limit is de-
termined primarily by the resonant structure design.

INTRODUCTION

HE ammonia gas maser invented by Gordon,
Zeiger and Townes! shows considerable promise
as a frequency standard and as a narrow band
amplifier. One limitation is the fixed frequency opera-
tion which is determined by the natural transition fre-

* Manuscript received by the PGMTT, September 30, 1958; re-
vised manuscript received, December 8, 1958. This work was sup-
ported by the Faculty Res. Com., University of California, and the
U. S. Air Force under Contract No. AF 49(638)-102 monitored by the
A. F. Office of Sci. Res., Air Res. and Dev. Command.

+ Electronics Res. Lab., Univ. California, Berkeley, Calif.

1J. P. Gordon, H. ]J. Zeiger and C. H. Townes, “The 'maser,”
Phys. Rev., vol. 99, pp. 1264-1274; August 13, 19535.

quencies of the NH; molecule. An extension of the
molecular beam technique which permits operation of
a molecular oscillator amplifier in the mm wave region
with a power output of the order of the ammonia maser
is suggested in this paper.

The present scheme uses a Stern-Gerlach? type of
molecular beam arrangement for achieving a polarized
beam of atoms. The atoms in the lower energy state may
be readily removed from the beam since they are spa-
tially separated. The upper state atoms then adiabatic-
ally enter a homogeneous magnetic field region where
they are subjected to an RF field polarized in the ap-
propriate direction to induce atomic transitions. In-
duced transitions are always coherent in phase and am-
plification of RF is achieved if the rate of transitions
times the energy from each transition exceeds the RF
power input and the system losses. The system may be
used as an oscillator since spontaneous emission will in-
duce further transitions by use of a high Q structure

2 W. Gerlach and O. Stern, “Der Experimentelle Nachweiss des
Magnetischen Moments des Silberatoms,” Zeit. Physik, vol. 8, pp.
110-112; December, 1921.



