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The Eflkiency of Excitation of a Surface Wave

on a Dielectric Cylinder*

J. W. DUNCAN~

&mzmary—This paper presents a theoretical and experimental

study of the excitation of the lowest order TM surface wave on an in-
fidte dielectric cylinder. The source is a circular filament of magnetic

current within the dielectric rod. The integral solution for the field is
evaluated as a contour integral by applying Cauchy% theorem. The
far zone radiation field is obtained by means of a saddle point integra-

tion. Curves are presented which show excitation efficiency as a
function of k,a, the normalized circumferential length of the filament.
A filament 0.83 wavelength in diameter will launch the TM mode

with an efficiency of 95 per cent. A narrow annular slot in a large
metal sheet was used to approximate the magnetic current filament

and efficiency was measured using Deschamps7 method for a two-

port junction. The experimental measurements verify the theoretical

analysis. In addition, it was found that the slot launching efficiency
was essentially independent of the ground plane dimensions.

INTRODUCTION

A

NUMBER of papers published in the last decade

have treated the mode characteristics of surface

waves on various types of open waveguides. Of

particular interest has been the utilization of such struc-

tures as surface wave antennas. A factor of prime im-

portance in all surface wave applications is the efficient

excitation of the desired mode on the guide. The excita-

tion efficiency of a source is defined as the ratio of the

power converted to the surface wave mode to the total

power which is delivered by the source.

In order to determine the excitation efficiency of a

source, one must solve the source form of Maxwell’s

equations which amounts to solving an inhomogeneous

wave equation. The usual technique of solving the differ-

ential equation is to apply the method of integral trans-

forms which yields the solution for the field in the form

of a definite integral. The integral is evaluated by con-

sidering it as a contour integral in the plane of the com-

plex propagation constant. The integrand has poles and

branch points in the complex plane. Applying Cauchy’s

theorem to the contour integral, the integral becomes

equal to the sum of the residues at the poles plus a

branch cut integral. The poles correspond to the surface

wave modes and the amplitude of a surface mode is

given by the residue of the integrand at the pole. The

branch cut integration yields the radiation field. Al-

ternately, the radiation field is obtained from the asymp-

totic evaluation of the integral by means of a sacldle

point integration, This method of analysis yields the
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in this paper was supported by Wright Air Development Center
under Contract No. AF33(616)-3220, and is extracted from a thesis
submitted in partial fulfillment of the requirements for the Ph.D. de-
gree, Dept. of Elec. Eng., University of Illinois, Urbana, Ill., 1958.
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amplitude of the radiation field and of the surface mode.

One may then calculate the radiated power and surface

wave power and determine the excitation efficiency of

the source.

Cullerrl calculated the efficiency of an infinitely long

slot above a dielectric coated plane conductor. He also

treated the slot above a corrugated surface and a source

such as a gently flared horn. His theory predicted a

maximum efficiency of 85 per cent for the slot above

the coated conductor. Richz attempted an experimental

verification of Cullen’s work and measured efficiencies

less than 20 per cent for the slot above the coated con-

ductor. Several factors may have contributed to the

difference in results.3’4

Fernando and Barlow5 considered a vertical dipole

source above flat reactive surfaces. A maximum effi-

ciency of about 80 per cent was predicted for a half-

wave dipole above a coated or a corrugated s~u-face. In

order to estimate efficiency experimentally, they meas-

ured the amplitude of the radiation and surface wave

fields and substituted into the theoretical field solutions

to calculate the respective powers and efficiency. Good

agreement was obtained between the theoretical launch-

ing efficiency and the efficiency calculated from the

measured amplitude of the fields.

Robertsc,7 investigated the single wire transmission

line excited from a flanged coaxial cable, This source

launches the transverse magnetic, -i!300mode on the wire.

He evaluated the input conductance of the coaxial line

by assuming an infinitesimal gap between the wire and

the outer conductor of the coax. The input conductance

is the sum of the radiation conductance GI and the

characteristic conductance Go. The excitation efficiency

of the source may be calculated from Gl anti GO. Roberts’

experimental work included measuring the input con-

ductance of the coaxial line for a number of different

1 A. L. Cullen, ‘(The excitation of plane surface waves, ” Pt’oc.

IEE, vol. 101, @. 4, Pp. 225–234 ; August, 1954.
2 G. J. Rich, “The launching of a plane surface wave,” PYOG. lEE,

vol. 102, pt. B, pp. 237–246; March, 1955.
8 A. L. Cullen, “Discussion on the launching of a, plane surface

wave, ” Proc. IEE, vol. 102, pt. B, pp. 824-825; November, 1955.
A R. H. DuHamel, “Discussion on the launching of a plane sur-

face wave, ” PYOC. IEE, vol. 103, pt. B, pp. 787–788; November,
1956.

6 W. M. G. Fernando and H. E. M. Barlow, “An investigation of
the properties of radial cylindrical surface waves launched over flat
~9a&cive surfaces, ” Proc. IEE, vol. 103, pt. B, pp. 307–318; May,

d T. E. Roberts, “Theory of the single wire transmission line, ” Y.
Ap&. Pkys., vol. 24, pp. 57–67; January, 1953.

7 T. E. Robert:, “An experimental investigatim of the single
wire transmission hue,” TRANS. IRE, vol. AP-2, pp. 46-56; April,
1954.
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gap radii. The measured conductance were plotted on a

graph and the curve was extrapolated to obtain the con-

ductance of an infinitesimal gap, since it was impossible

to measure such a source experimentally. The extra-

polated value agreed quite closely with the conductance

predicted from theory.

Most of the papers on excitation efficiency which have

included experimental measurements have treated

sources placed near infinite planar structures such as

the dielectric coated conductor. Usually, it has not been

feasible to measure efficiency for these structures. It

seems worthwhile to apply the method of analysis to a

problem which will permit direct experimental meas-

urements of efficiency. The surface waveguide selected

for the problem is the dielectric rod. The source, which

has a simple physical realization, is the circular filament

of magnetic current placed inside the rod and concentric

with the longitudinal axis of the rod. One would expect

the current ring to be an efficient exciter of the lowest

order, transverse magnetic mode which can propagate

on a dielectric rod. This mode is known as the Eol mode.

The purpose of this investigation is to determine the

efficiency with which the magnetic current ring excites

the Eol mode and then to measure the efficiency experi-

mentally. The excitation efficiency is readily measured

using Deschamps’ method for calibrating a two-port

waveguide junction.

A similar problem has been treated by C. Jauquet, ‘g

who selected a magnetic current ring which was greater

in diameter than the dielectric rod. In his papers,

Jauquet obtains an integral solution for the field but

does not present any calculations of excitation efficiency.

His experimental measurements were concerned with

the phase velocity and radial distribution of the surface

wave mode.

MATHEMATICAL FORMULATION

The problem to be investigated is illustrated in Fig. 1.
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Fig. l—Infinitely long dielectric rod excited by a circular filament
of magnetic current located at z = O.

s C. Jauque~, “L’onde de surface sur un cylindre dielectrique Ie
moyen de l’exciter—ses characteristiques, ” Rev. HF, vol. 3, no. 8,
pp. 283–296 ; 1956.

s C. Jauquet, “Excitation d’une onde de surface transverse mag-
netique se propageant sur un cylindre dielectrique, ” A W. Telecom-
WJn., vol. 12, pp. 217–233; June, 1957.

An infinitely long, dielectric rod of radius b is located

such that its longitudinal axis corresponds to the z axis

of circular cylinder coordinates (p, @, z). The rod is con-

sidered Iossless, a = O, with a magnetic permeability PO

and permittivity 61= e,co, where e, is the relative dielec-

tric constant. The medium surrounding the rod and ex-

tending to infinity is free space, with constants PO and

Eo. The electromagnetic field source is a filamentary ring

of magnetic current located at the plane z = O. The ring

is of radius a, where O <a <b, and is infinitesimally small

in cross section. The source distribution is represented

as a product of Dirac delta functions in the p and z co-

ordinates as follows:

I? = @(p – a)c$(z) (1)

where ~ is a unit vector in the q5 direction. The source

distribution 7? is independent of @ and is a unit source

such that

ff~d~. =~:fo:d(P - .D(z,dzd,= 1.

K has the dimensions of volts per square meter.

The electromagnetic field is a solution of Maxwell’s

equations. Written in differential form for e–io~ time de-

pendence, we have

vxE=iwpE–7?

vx77=-i@eE. (2)

Taking the curl of the second equation and then sub-

stituting the first relation for V X~ yields

–’vxvx E+m2@= –id?. (3)

The only non-zero component of ~ is the coefficient of

the unit vector $. We may write the ~ component of the

vector equation (3) and obtain the nonhomogeneous

scalar equation

(–v x v x Z7], + @’&,H, = – k$(p – .)8(Z)

where the @ component of the bracketed term is indi-

cated.

The magnetic current filament generates a field hav-

ing components H+, Ep, and EZ, while the components

E+, HP, and H% are equal to zero. Due to the symmetry

of the source, the field is independent of 4 and we note

that all partial derivatives with respect to @ must be

zero. It is evident that the source produces a field which

is circularly symmetric and transverse magnetic with

respect to the z axis. Expanding the bracketed term in

cylindrical coordinates, we obtain the partial differ-

ential equation relating H@(p, z) to the source

C?2H4 1 8H4
—+–—

apz ()p dp + ‘2-; ‘“+’%

= – iad(p – a)~(z) (4)

where k2 =U2W.
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From ~= (1/– iu,)VX~, it follows that

1 dll+
E,(p, z) = ~ —

LOX 8Z

1

(

dH+
E,(p, z) = —

)
—+~H+ .

— iwe dp P
(5)

In

of

order to solve (4) for H4, we shall apply the method

integral transforms to reduce (4) to a nonhomo-

geneous, ordinary differential equation. We define the

Fourier transform of .H~(p, z) as

s+.
~(P, .?) = HO(P7 Z) e–i~’dz. (6)

—cc

The inverse transform is given by

1

f

+.

H,#,(p, z) = — h(p, f)ei~’dt. (7)
2T –m

Assuming that the transform of H+ (p, z) exists, we mul-

tiply each term of (4) by e–;~’ and integrate over the in-

finite range with respect to z to obtain

( )$+;:+ w-r-+ A=–i.,ti(p -a) (8)
P2

where the source variation 13(z) is no longer present since

s+.
~(z)e–it=dz = 1.

—m

We may consider (8) as an ordinary differential equa-

tion in which ~ is a parameter constant. The boundary

conditions on h(p, {) are obtained by taking the Fourier

transform of the original boundary conditions on

H4(P, z) and dHd/dp. The problem is one of solving (8)

for h(p, f) subject to the transformed boundary condi-

tions. H+(P, z) is then obtained by use of the inverse

transform (7). The integral expression for HO(P, z) is

derived in the following section.

SOLUTION OF THE BOUNDARY VALUE PROBLEM

Consider the form of the nonhomogeneous differential

(8). One could solve (8) using the Hankel transform;

however, the definition of the delta function allows one

to solve (8) in a simpler manner. The delta function is

defined by the relations

s

a+A

8(p – a)dp = 1, and 6(P – a) = O for p # a.
a—A

Consequently, for all p other than p = a, (8) reduces to

the homogeneous differential equation

The delta function ~(p – a) implies a boundary ccmdi-

tion which lz(p, ~) must satisfy at p = a. Multiplying each
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term of (8) by dp and integrating over the interval 2A

from p =a –A to p =a+A, one obtains

d~ mi-A

~
.-.+s ;&y+ (H’)fkd,,

Assuming that h(p, ~) is continuous for all ,p, in the limit

as A-O and p~a, (10) reduces to

dh dh
— ——. — 22 LX.
dp .+L dp a_A

(11)

We have shown that a continuous h(p, f) which satis-

fies the homogeneous equation (9) and whew first deriv-

ative is discontinuous by — iae at p = a is a solution of

(8) .

The remaining boundary conditions on h(p, f) follow

from the boundary conditions imposed on II@(p, z) and

E,(p, z) by Maxwell’s equations. Referring to Fig. 1,

we denote the cross-sectional area of the rod as region I

and the space outside the rod as region [1, Since tan-

gential P is continuous at a magnetic current discon-

tinuity, we see that H@(p, z) is continuous at p = a for

all z including the filament position z = O, Since tan-

gential E and Z? are continuous across a dielectric

boundary, we note that H@(p, z) and E.(P7 z) must be

continuous at p = b for all z. The corresponding condi-

tions on h(p, f) are

1) H@(p, z) continuous at p =a for all z implies that

S
+.

k(p, {) = H4(p, z)e–i~’dz
—m

must also be continuous at p = a, hence

2) Similarly, since H+(p) z) is continuous at p = b for

all z,

3) From (5) we write

In region 1, where O <p S b, the permittivit.y cl= c,eo. In

region II, where p > b, e = CO. -E.(P, Z) continuous at P = ~

for all z requires

Taking the transform, we obtain

dlf (V?
CT— —— -l)L+ (Er p = o (14)

dp b~A dp b_~ b+ A

by reason of (13),
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In order to determine H@(p, z) in region II, we must pa co, .HIfl) (pOp) vanishes and HI(ZJ (vOp) is unbounded

solve (8) for the corresponding Iz(p, ~). Inside the dielec- for the defined argument of VO; therefore, Q = O and we

tric rod, for all p except p = a, (8) becomes obtain

d2h

~+~

P

where k12 = W2JJOC1.

p, (8) becomes

d2h

~++
P

( )$+ k12–{2–~ h=O
h(p, f) = D~l(’)(Pop) (19)

(15)
P2 where

Outside the dielectric rod and for all

dh ( )~+k02–{2–~h=0 (16) In order to solve for the arbitrary constants A, B, C,

P2 and D, we apply the boundary conditions (11), (12),

where koz =wzpOeO.

We proceed by writing general solutions h(p, ~) of

(15) for the regions O <p sa, and a <p g b. The discon-

tinuity at p = a appears in the boundary condition (1 1).

A general solution of (16) yields h(p, {) for the region

p ~ b. The three solutions possess six arbitrary constants.

The constants are determined from the requirements

that the field be finite at p = O, that the field be regular

at infinity and that it satisfy the radiation condition,

and the four boundary conditions (11), (12), (13), and

(14). Choosing the solution h(p, ~) for region II, the in-

verse transform (7) must then be evaluated to yield

II+(P, z) forpzb.

Eq. (15) is recognized as a form of Bessel’s differ-

ential equation. It has the general solution

k(p, f) = AJ1(VIP) + Prl(vlp)

where A and P are arbitrary constants, Jl(vlp) and

Yl(vlp) are Bessel functions of the first and second kind,

respectively, and

VIZ = klz — ~a.

Consider the region O <p ~ a. Since H~(p, z) and, there-

fore, Iz(p, r) must be finite at p = O, we determine that

P = O, since Yl(vlp) is unbounded as peO. Hence,

MP, -r) = AJ1(VIP) (17)

where
————

VI = ~k12 — f2

O~p~a.

For the region a <p S b, the YI function must be in-

cluded, and we have

up, f) = -lUl(vlp) + c Y1(V1)P. (18)

A general solution of (16) is written in terms of

Hankel functions of the first and second kind

h(p) f) = DIIl(l)(voP) + QH1(2)(VOP)

where

VO = dko2 — {7.

It will be seen later that, in general, V. is complex; there-

fore we define the argument of V. to be O <arg V. <r. As

(13), and (14) to the appropriate solutions (17), (18),

and (19). Omitting the details, the following four equa-

tions are obtained:

– (v,b) AJJ(v~a) + (v@) B.T{(v~a) + (vlb)CY;(vla)

AJ~(vla) – lUl(vla) – CYl(vla) = O

BJ,(v,b) + CY,(v,b) – D17,(lJ(vob) = O

(v,b)BJ,’(vlb) + (vlb)CY1’(vlb)

— D[q(vOb)H; flj(vOb) + (c, – l)Hl(lJ(vOb)] = O. (20)

This system of equations was solved by finding the in-

verse of the coefficient matrix. The constant D was de-

termined to be

Jl(vla)
D=icwla

(v,b)Jo(v,b)H,(’j (vob) –c,(vOb)J1(v,b) Il#)(vOb)
. (21)

Substituting (21) into (19) we obtain h(p, ~) for the re-

gion p 2 b. The solution k(p, ~) is then substituted into

the inverse transform (7) to yield the integral expression

for H+(p, z) in region II. This result is

“s+. Jl(vla)Hl(l)(vop)ei~zd~
(22)

_@ (v,b).T&,b)H,(’) (vOb) –e,(vob)J,(v,b) Ilo(’)(vob)

where

V1 = ~k12 — {2; VO = ~ko2 — {2

and

P>b.

SINGULARITIES OF THE INTEGRAND—SOLUTION

OF THE MODE EQUATION

We wish to evaluate the real infinite integral (22),

This is accomplished by considering it as a contour in-

tegral in the complex ~ plane and applying Cauchy’s

residue theorem. The path of closure in the complex

plane is selected to ensure convergence of the integral.

Evaluation of the contour integral is treated in the fol-

lowing section. For the present we shall consider ~ com-

plex and determine the singularities of the integrand of

(22).
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Branch Points

Consider the variable VI which appears in the argu-

ments of Jo and J1 in (22). Since VI= ~k12—{2, then VI

is multiple-valued in any neighborhood of r = ~ kl.

However, if one considers the power series expansions of

Jo and Jl, One sees that the integrand is an even func-

tion of V1 so that the points { = f kl are not actually

branch points. The Hankel function arguments contain

the variable V.= ~kO~ – fz. The Hankel function has a

logarithmic singularity at VO= O, and so is multiple-

valued in any neighborhood of ~ = ~ ko. The points

f k. are, therefore, branch points of the integrand. We

select branch cuts in the ~ plane as shown in Fig. 2. We

note that k2 =co~pe is real. Thus, the points t kl and the

~ k. lie on the real axis with I kl[ > I kol since E1> CO. The
branch cuts are defined as ~ = f ko+i Im r.

IM S

tl,

RE s

Fig. 2—Contour of integration in the t plane.

Poles

Before we investigate the integrand of (22) for poles,

we shall discuss the significance of a pole in the physical

problem. Assume that the point { = [0 is a pole of the

integrand. When (22) is evaluated as a contour integral,

a residue contribution at ~. must be included. Thus,

H@(p, z) will have a term of the form

~Hl(l)(vOp)e’rO’. (23)

Since we assumed a lossless dielectric rod by taking

kl’ =coqpoq real, we will expect (23) to represent a wave

propagating without attenuation, which implies that

.?o is real. If fO is real and I J-al > I k,[ , then V. is pure

imaginary and ~ltl) (vop) reduces to the K1 Bessel func-

tion which decays exponentially with increasing argu-

ment. Under these conditions, (23) represents a surface

wave of amplitude A, whose field distribution outside

the dielectric rod is an exponential decay. The wave

propagates in the positive z direction according to

~–i(ti t–~w), The poles of the illtegrand are those values of

~ which cause the denominator of (22) to vanish. Equat-

ing the denominator of (22) to zero yields

JO(v,b) Ho (1)(vab)
(V,b) — = er(vob)

Hl(’)(vob) “
(24)

Jl(vlb)

For convenience of notation, let Xl= vlb ancl XO = vob;

then (24) may be written

~1 Jo(XI) Ho(’)(XO)

J,(X,) = ‘“xo ~,(l) (jyo) “
(25)

It can be shown that the only values of real { for which

(25) can be satisfied are for ~ in the range I kol < I (I

< I kl[ .10 Recalling that VI = V%2-{2 and vo ==v’k02-f2,

where k12>k02>0, consider { real and I kol < I {1 < I kll .

Then VI is real and V. is pure imaginary. It follows that

Xl is real and X. is pure imaginary. Let XO ==it, wlhere

& is positive real. Eq. (25) becomes

Jo(X,) Bo(l)(i$)

–xl— = Cr(—ig) ‘@- (26)
J,(A’,) ~l(l)(@

= ~rt –
K,(.$)

where the Km functions are modified Bessel functions

of the second kind.

A graph of the functions –XI [JO(XJ/JI(XJ ] and

e,~ [KO($) /K1($) ] is presented in Fig. 3. The function

– X, [JO(XJ /Jl(Xl) ] is discontinuous each time Jl(xl)
vanishes and so an infinity of branches occur for ever

increasing Xl. It passes through zero each time Jo(Xl)

10
I I I I 1~ 1 T-rl

++---++!=”xil.ll-l
6

./ I
I 1 I I ‘O’’’--u-F($)=GiK~e)

/’/
F($) 4

If

/

/ ‘“ ’41/
FIX,]

/’
2 —

/
/

/ /

o L

Fig. 3—Graph of the functions F(X1) and F(:). T]he transcendental
mode equation is F(XI) = F(i).

has a zero. The function e,~ [Ko(&) /Kl(O ] approaches

zero as .$~O and increases positively for increasing $. It

is evident in Fig. 3 that for every finite .$, an infinity of

values Xl exist which satisfy (26). In orcler to obtain a

finite number of unique solutions of the mode equation,

a second relation between Xl and ( is needed. It follows

from the definitions that

V12= k,’ – p

lJo2 = ko2 – {2

where t is identically the same in VI and VO. Elimination

of ~2 yields

2?r 2
V12 _ V02 = &Z — ko2 =

()

~ (e, - 1)

10J. W. Duncan, “The Efficiency of Excitation of a Surface Wave
on a Dielectric Cylinder, ” Antenna Lab., Elec. Eng. Res. Lab.,
Eng. Exper. Station, University of Illinois, Urbana, Ill., Tech. Rep.
No, 32, PP. 20-22; May, 1958.
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where A. is the free space wavelength corresponding to

the source frequency. Multiplying by bz yields

()2~b 2
(vlb)’ – (vob)’ = Xl’ – X02 = ~ (c, – 1).

Since XO = ii$, we obtain the second relation between Xl

and & which is

Xl’ + .fZ = R’ (27)

where

The graphical solution of (26) is illustrated in

Fig. 4, which includes curves of Xl as a function of ~

obtained from Fig. 3, and the relation (27). Note that

(27) is the equation of a circle of radius R with center at

the origin. The multiple solutions Xl for every ~ as dis-

cussed with Fig. 3 are evident in Fig. 4. The first branch

of Xl starts at Xl= 2.405 for ~ = O and approaches

Xl= 3.83 asymptotically with increasing ~. Xl= 2.405 is

the first zero of .TO(XJ and Xl= 3.83 is the first zero of

J1(XJ. The second branch commences at 5.52 and ap-

proaches 7.02, which corresponds to the second zeros of

J,(Xl) and JI(X,), respectively. An infinity of branches

is thus established.

x,

‘m
5 I i

MOE SOLUTION (4, X,)

4

3
\

2

I R

\

o
0 2 3 4 s 6

Fig. 4—Solution of the mode equation: XI as a function of &
which satisfies F(X1) = F(Q, and the relation X12+:2= R2.

Consider the case R <2.405. Since Xl= ~R2 – g’ < R,

Fig. 3 shows that (26) cannot be satisfied for Xl <2.405,

that is, no solution of the mode equation exists for

R< 2.405. This is also evident in Fig. 4. Physically, this

means that the dielectric rod waveguide is below cutoff

and cannot propagate a surface wave of the transverse

magnetic type,

Referring to Fig. 4, if 2.405 <R <5.52, a single, unique

solution ($, XJ of (26) and (27) results. Thus, (22) has

poles at r = ~ ro, where f_o may be determined from the

solution ($, Xl). The poles occur on the real axis in the

region \ ko I < I f I < I kl 1. We see that when R is restricted

to the range 2.405< R <5.52, the dielectric rod propa-

gates a single surface wave which is the lowest order,

circularly symmetric, transverse magnetic mode. It is

known as the Eol mode and propagates as ei~oZfor z> O

and e–i~oz for z <O.

Solution of the Mode Equation

Specific solutions of (26) and (27) are required in order

to calculate the power in the surface wave and excitation

efficiency. A value of 2.56 was chosen for e,, the relative

dielectric constant of the rod. R was restricted to the

range 2.405 <R< 5.52. Eqs. (26) and (27) were solved

by numerical methods on the University of Illinois digi-

tal computer. 11 Six solutions (.c, Xl) were obtained for

selected values of kob equal to 2.2, 2.6, 3.0, 3.4, 3.8, and

4.2.

Table I presents $, Xl, and the ratio h,/XO correspond-

ing to each value of kob. Ag is the guide wavelength of

the surface wave mode. The ratio Ar/AO follows from the

definition of Vo.

TABLE I

2.2 0.5603 2.6901 0.9691
2.6 1,2329 3.0043 0.9036
3.0 1.9353 3.2086 0.8403
3.4 2.6269 3.3366 0.7913

3.2905 3.4204 0.7560
2:; 3.9264 3.4788 0.7305

EVALUATION OF THE CONTOUR INTEGRAL

We evaluate the integral solution (22) by considering

it as a contour integral in the complex { plane. For con-

venience we write (22) in the form

S+.
H@(p, 2) = U(~)d{ (29)

—m

where

u(f) = ‘y

Jl(vla)Hl(l)(vop) e{~’

To obtain (29) we select the closed contour shown in

Fig. 2, which consists of the real axis from – R to +R,

the circular arc RI of radius R, the path r along the

11J. W. Duncan, op. cit., pp. 83-105.
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branch cut and imaginary axis, and the arc RZ. Applying

Cauchy’s residue theorem, we write

si-R

–R “’’’’+s.,+s,+s., 1
= 2mi Residue U({) . (30)

co

In the limit as R+ ~, the integrand ~(~) vanishes along

RI and Rz so that (30) becomes

S+.
H,$(/l, z] = U({)df

—w

= 27ri Residue U({) –
J

U({)d~. (31)
ro r

The residue term of (31) is the surface wave field while

the integration along 17 yields the radiation field. Evalu-

ation of the line integral along I’ is extremely difficult.

It is sufficient for our purposes to obtain an approxima-

tion to the far zone radiation field. Under these condi-

tions the coordinates p and z in U(r) are relatively large

and the integral is of the type which may be evaluated

where

T=*+ i?l.

Now r = sin–l (f/kO) is a multiple-valued function of ~

and the region of integration in the ~ plane transforms

into a strip in the r plane which is bound by two curved

lines corresponding to the branch cuts in the ~ plane.

They are defined by

sin ~ cosh q = ~ 1. (34)

The path of integration along the real axis in the ~ plane

transforms to the path Cl in the ~ plane as shown in

Fig. 5. The branch points ~ = t kO transform to the

points ~ = ~7r/2 while the images of the poles + ~0 are

the points TO=7r/2 –i cosh–1 (~O/kJ and 70= –Tr/2

+; cosh-’ (f O/ko). The transformation (33) yields

vo=+kocos T

VI = + ko~c, — sin2 r = kow (35)

where for convenience we let w, a function of ~, repre-

sent the radical <c, – sin2 ~. Substituting (33) and (35)

into the integral ~ca U(f)d~, one obtains

iula s Jl(koaw)llltl)(kop cos ~)eik”’ ‘ii’ ‘ cos rdr
H@(p, z) = — (36)

2~b c. wyo(kobw)~,f’j(kob COS~) – 6, COS7-Jl(kobw)Z70(1 )(kob COS7) “

by the saddle point method of integration. 12 Instead of If p is large and kop cos ~ %0, the Hankel function in the

integrating along the path I’ we deform I’ into the path numerator of (36) may be replaced by its asymptotic

of steepest descent C. which passes through the saddle representation. Furthermore, it is convenient to in-

point of the integrand. The path C,, which is directed troduce the spherical coordinate system shown in Fig.

in the reverse sense to I’, is shown in Fig. 2. Thus, (31) 6, where the polar angle O is measured frc}m the plane

may be replaced by z = O. In this coordinate system we note that p =r cos 8

and z = r sin 0. Substituting for p and z in (36) and re-

I?o(p, z) = 2ri Residue U({) + ~ ?J(f)df (32) ~~~~g the Hankel function by its asymptotic formula

10 c.

(37)

where

Jl(kOaw)
F(T) = —

wJo(kobw)ZI1 (lJ(kOb COST) — E, COSTJl(kobw)~o(l)(kob cOS ~)

which is the desired form of the solution H~(p, z) in re- Integral (37) is valid for r large and kor cos O# O. lt is

gion II. readily evaluated by the saddle point method. The

The Radiation Field

We shall now evaluate the integral ~c. U(f)d~ by means

of the saddle point method of integration. In applying

this method it is convenient to introduce the transfor-

mation of variable

{=kosinr (33)

12E. T cop~on, ~~Theory of Functions of a Complex Variable, ”

Oxford University Press, London, Eng., pp. 330-331; 1955.

saddle point is defined by the equa~ion

:Cos(w+)=o

which yields

T=o.

Note that the saddle point corresponds

angle 0. In the ~ plane the saddle point is

(38)

(39)

to the polar

(40)
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2A i?. I
- SIV* Coshll,l

Fig. 5—Path of integration in the 7 plane.

The path of steepest descent C, in the r plane is defined

by the equation

sin (~ + 7r/2 — O) cosh q = 1. (41)

Fig. 6—Cylindrical coordinate system (p, O, z) and
spherical coordinate system (r, +, 0).

Carrying out the evaluation of (44), one obtains

H~II(p, Z) = A1lKl(@/b) eiro’

where

“1(3J1(:X1)
A1l =

rob 2(R/&)2

{ [(;) L)]Jo(xl) Kl(’$) + ‘& + ~ Jo(X_l)~o(i) + (G – ~)Jl(xl)~l(t)

x, }

rob = <(kob)’ + i?

R2 = X12 + (2.

(45)

The shaded area of Fig. 5 is the region of convergence of The other surface wave components in Regions I and II

the integral (37) as q approaches f m on c,. follow from Maxwell’s equations. They are

Carrying out the evaluation of (37), one obtains

()
-%ll(P, z) = ~co~ H@II(p, z)

‘“(’)’)= -’lE(:)F@)T ’42)

K,(t)
27~I(pj Z) = z4111 — Jl(Xlp/b)e@.

J,(X,)

where
(46)

F(0) =
Jl(koaw)

wJO(kobw)H1flJ (kob COSO) — q COSOJ1(kObw)HOtlj(kOb COSd) “

It follows from Maxwell’s equations that

()E@(r, 0) = – i ~ F(O) e .
‘r

(43)

The Surface Wave Field

Let H@II(p, z) represent the surface wave field in re-

gion II. It is given by

I?@I’(p, z) = 2mi Residue U(~) \r, (44)

where

P>b, 2>0.

The pole ~. is a simple pole since the denominator of

U(~) vanishes at ~0 but its first derivative does not.

THE POWER INTEGRALS AND EXCITATION EFFICIENCY

The radiated power WR is obtained by integrating

the average Poynting vector over the surface of a large

sphere of radius Y. The radiation field, which has com-

ponents Eo and I?+, is independent of $ and is symmetri-

cal about the plane O = O. The integral for the radiated

power is

where F(O) is defined in (42).

A discussion of the integrand of (47) is worthwhile at

this point. We note that the magnitude of the radiation
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field is proportional to I F(O)\ . As O approaches 7r/2,

F(O) vanishes so the radiation pattern has a null along
the axis of the dielectric rod. The influence of the source
dimension (LOa) on the radiation field and VW is con-

tained in the function Jl(kOaw) which is the numerator
of F(O). The dielectric rod parameter (kOb) appears only
in the denominator. In order to obtain maximum ex-
citation efficiency for any kOb, W’Rshould be a minimum.
I/W will be a minimum if Jl(kOaw) vanishes or is quite
small as 6 ranges from zero to 7r/2; this occurs when
.71(kOaw) passes through a zero. Consider the function
w = ~e~—sin% 0 with e,= 2.56. As 8 takes on values
05057r/2, w has the range 1.25< wg1.6. Assume an
average value for w, W., = 1.42. We should expect the
most efficient source to have the approximate dimen-
sion koa=3.83/wGv= 2.7, where 3.83 is the first zero of
the JI function. This analysis is verified in the efficiency
curves presented in the latter part of this section.

The integral (47) was evaluated numerically on the
University of Illinois digital computer. JW+ was com-
puted as koa varied in discrete increments of 0.2 over

the range 0< koa < kd for a particular value of k@. The
results of these computations appear in the eficiency
curves.

The surface wave power Ws is obtained by integrat-
ing the average Poynting vector over the surface of an
infinite transverse plane normal to the z axis. Since the
surface field components Ep and H+ are different for re-
gions I and II, separate integrations are necessary for
the regions O<p < b and p > b. The resulting expression
for the total surface wave power is

(48)

where

T=; (49)

where Ws is the surface wave power.
WT is the total power delivered by the source.
Goubau~3 has proved that, for lossless surface wave-

guides, the radiation and surface wave fields are orthog-
onal with regard to power considerations. In this case,
the total energy delivered by the source is equal to the
sum of the surface wave power and the radiated power.
Since we are considering a lossless dielectric rod, the
orthogonality condition holds and T’ is given by

Ws
T=—— (50)

wS + wR

where Ws is the surface wave power and WR is the
radiated power.

Efficiency was calculated according to (!;0) using com-
puted values of Ws and WR. Figs. 7 and 8 present curves
of efficiency as a function of koa for the selected values
of kob. Efficiencies greater than 90 per cent are pre-
dicted for koa approximately equal to 2.6.

EXPERIMENTAL INVESTIGATION

The magnetic cm-rent ring was purposely chosen for
the theoretical problem because it is a source which has
a simple physical realization. Consider Fig,, 1. By sym-
metry the magnetic current filament generates a field
which has no electric component in the plane z = O. In
the plane of the source the only non-zero component of
~ is E,, which is normal to the plane. Since tangential
~ vanishes over the plane, an infinitely large metal sheet
may be placed at the source position without disturbing
the field. One may simulate the source by a vex-y narrow
annular slot in a large conducting sheet or ground plane.

~8=T+ {%%12[
JO’(X,) + .I,’(.YJ - + JO(W(.Y1)]+ pm- K,’(t) + ; mm] \

ko~,[(~~+ll ~ , w“:-+ ~
————“To(x,)K,(g)+ [Cr(+) + (+)] JO(X’l)KOG)+ (+ – l) J1(XIM($)

1 I
Inspection of Ns shows that the source dimension (koa)

appears only in the argument of Jlz [(kOa/kOb)Xl]. The
remaining portion, which is rather formidable, is a func-
tion of e, and the mode solution (~, XJ. It has a constant
value for any G and .kOb. Ns is a function of the source
only by the term J12 [(kOa/k Ob)Xl]. It should be noted,
however, that a/b appears in the constant which multi-
plies Ns to give W’s. Selecting a value of kob with
e,= 2.56, Ws was calculated according to (48) as a func-
tion of koa using values of Xg/kO, ~, and Xl from Table I.

Excitation Eficiency

The efficiency with which the source delivers power
to the surface wave is called the excitation efficiency of
the source. Denoting efficiency by the symbol T, it is
defined as

Then, of course, the dielectric rod extends from the

ground plane in only one direction. The annular slot
may be illuminated using a circular or coaxial wave-
guide exciter. If the rod is terminated in a resistance
card load which produces negligible reflection of the sur-
face wave, then the finite rod excited by an annular slot
in a ground plane simulates in a half space the theoreti-
cal problem of Fig. 1.

In order for the slot to be a good approximation of
the filament, the slot width must be small compared to
the wavelength and the electric field in the slot must be
radial and uniform about the circumference. It is as-

13G. Goubau, “On the excitation of surface Wavesl” PROC.IRE,
VO].40, pp. 865–868; July, 1952.
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Koo

Fig. 7—Excitation efficiency as a function of the
source dimension kNZ.
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Fig. 8—Excitation efficiency as a function of the
source dimension kOa.

sumed that the mean radius of the slot corresponds to
the radius of the infinitesimal current filament. The slot
may be illuminated from a circular waveguide propagat-
ing the TMO1 mode, or from a coaxial line excited in the
usual TEM mode. The coaxial line is preferable since
the center conductor provides a convenient means of
supporting the circular disc which is the ground plane
within the annular slot.

The efficiency with which the slot excites the surface
wave may be measured using Deschamps’ method for
determining the insertion loss of a waveguide j unc-
tion.14J5 The transition from the coaxial line to the di-
electric rod waveguide is considered as a two-port wave-
guide junction. Assuming that the dielectric rod and
coaxial line are Iossless, then the dissipative attenuation
of the junction results entirely from the power radiated
into space by the slot. If all of the power delivered to
the slot is converted to the surface wave, then no power
is lost as stray radiation and the junction is 100 per cent
efficient. This method has been used previously to meas-
ure the launching efficiency of sources placed on a di-
electric image line.le

14G. A. Deschamps, “Determination of reflection coefficients and
insertion loss of a waveguide junction,’> J. Appl. Phys., vol. 24, pp.
1046-1050; AugusJ, 1953.

1sH. F. MathIs, “Experimental procedures for determining the
efficiency of four-terminal networks, ” J. Appl. Phys., vol. 25, pp.
982-986; August, 1954.

16R. H. DuHamel and J. W. Duncan, ‘(Launching efficiency of
wires and slots for a dielectric rod waveguide, ” TRANS.IRE, vol.
iMTT-6, pp. 277-284;July, 1958.

GROUND PLANE

SHORT CIRCUIT PLATE

t

COAXIAL EXCITER

COAXIAL SLOTTED LINE

●

Fig. 9—Representation of the two-port junction.

TUNING m?+% J

1

Fig. 10—Cross section of the coaxial exciter.

A schematic representation of the arrangement used
to measure the efficiency of the junction is given in
Fig. 9. The measurements were performed using a
2-inch diameter polystyrene rod mounted vertically on
a 60-inch square ground plane. For most of the meas-
urements the dielectric rod was 40 cm long, although in
some instances, the length was increased to 134 cm.

Using Deschamps’ method, one obtains the efficiency
of the entire transition between the input reference
plane and the output reference plane, that is, between
the measuring probe and the short circuit termination.
Since we are interested in measuring the dissipative at-
tenuation of just the annular slot, it is essential that the
rest of the transition shall introduce only negligible at-
tenuation. For the present we shall ignore the dielectric
rod loss since it is very small. It follows, then, that a
low loss exciter must be constructed to illuminate the
annular slot. The annular slot presents a very low con-
ductance and capacitive susceptance to the exciting
waveguide. Therefore, the feed waveguide must be a
low impedance line with some means of tuning out the
capacitive susceptance of the slot at the ground plane
position.

Fig. 10 shows a cross sectional view of the low im-
pedance coaxial line which was constructed for this
purpose. The inner diameter of the outer wall of the
coax was l; inches and the inner conductor diameter
was 1* inches, which yields a 24-ohm line. A two wave-
length tapered section transformed the 24-ohm line to a
standard 50 ohm, type N connector. Two polystyrene
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rings centered the inner conductor within the cylinder.
The ring at the ground plane position was a quarter-
wavelength transformer which would match the 24-ohm
line to a 9.5-ohm resistance load. A circular tuning disc

or washer was placed on the end of the center conductor
to provide a series inductive reactance to cancel the
capacitive susceptance of the slot. The circular disc
which formed the inner boundary of the annular slot
was fixed to the tuning washer and the coax center con-
ductor by a special mounting screw. Since the neighbor-
hood of the annular slot and tuning washer is a resonant
cavity, all parts were silver--plated to minimize losses.

A family of discs and rings were fabricated to permit
varying the annular slot radius from +–~ inch while
maintaining the slot width constant at + inch. The ~
inch slot width corresponds to .067 A. and .076 ho at
k,b equal to 3.4 and 3.8, respectively. Recalling that the
radius of the dielectric rod is 1 inch, it is convenient to
express the slot radius in the normalized form a/b; then
the source dimension koa for any kob is given by kob(a/b).
Six slots were constructed for the measurements. Table
II gives the normalized slot radius a/b, and the corre-
sponding dimension koa at the two values of kob which
were used for the measurements.

TABLE II

Normalized Slot I koa I k,a
Radius a/b When kob=3.4 When kob=3.8

Koa

Fig. 1l—Comparison of the theoretical and
measured excitation efficiency.
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Fig. 12—Comparison of the theoretical and
measured excitation efficiency.

0.50 I 1.70 I 1.90
0.625 2.12 2.38
0.687 2.34 2.61
0.75 2.55 2.85
0.812 2.76 3.08
0.875 2.98 3.32

A slot + inch wide and 2 inches long was milled in the
side wall of the exciter so that the standing wave ratio
in the exciter could be measured. After a particular slot
was mounted on the exciter, various tuning washers
were tested until one was found which reduced the
VSWR in the exciter to less than 2 when the dielectric
rod was terminated with a matched load. The image
circle was determined from measurements made in a
coaxial slotted line which was connected directly to the
exciter through a type N elbow connector.

When efficiency was measured as shown in Fig. 9, the
result obtained was not precisely the excitation efi-
ciency of the annular slot; instead it was the efficiency
of the entire transition between the measuring probe and
the short circuit termination. Although the losses in the
system were small, the measured efficiency was reduced
somewhat by the dielectric rod attenuation and by the
loss between the measuring probe and the ground plane,
The system losses were measured approximately by
means of Deschamps’ method. 17The measurements of
slot launching efficiency were then corrected to account
for the system losses.

17 DunCall, oP. Cd., pp. be–72-

Six slots were measured in the laboratory. Measure-
ments were performed at frequencies of 6387 mc and
7138 mc which result in kob equal to 3.4 and 3.8, re-
spective y. The results are presented in Figs. 1[1 and 12
for comparison with the theoretical curves of efficiency.
The data include the measured efficiency T and the CO1-
rected efficiency l’. for each source koa. Tlhe very close
agreement between the experimental points and the
theoretical curve is evident. In all cases i;he measured
efficiency ‘T, which included the system losses, was with-
in 10 per cent of the efficiency predicted by theory. ‘It’he
experimental measurements verify that an excitation
efficiency of approximately 95 per cent may be obtained
from an annular slot of dimension koa = 2.6.

It should be emphasized that a good “matched”
transition is necessary in order to realize the high effi-
ciency of the annular slot. In the laboratcwy the pre-
dicted source efficiencies were not measured until the
matched transition of the coaxial exciter was con-
structed. Of course, the efficiency of the annular slot is
independent of the feed structure, but substantial
coupling of power from the closed waveguide to the sur-
face waveguide is obtained only when a good impedance
match is provided at the aperture plane. otherwise, a
very high standing wave ratio exists in tlhe vicinity of
the aperture and most of the power delivered by the
feed waveguide is reflected.

As a point of practical interest, the efficiency of the
annular slot in the presence of a small ground plane was
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determined. This effect was investigated by measuring
slot efficiencies as the size of the ground plane was re-
duced. Surprisingly, the ground plane dimension had
little effect on the efficiency. At least, this was the case
at the two values of kob which were considered. The
ground plane was reduced to a 10-inch diameter flange
and no appreciable change in efficiency was noted. Con-
sequently, the ground plane was removed so that the
launching structure consisted of the dielectric rod
mounted on the coaxial exciter. Efficiency was meas-
ured at kob equal to 3.4 and 3.8. The results are pre-
sented in Table III which includes, for comparison, the
efficiency that was measured with the large ground
plane. Note that these data have not been corrected to
account for the system losses.
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TABLE III

k~a
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3.08
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Efficiency
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Plane
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0.835
0.77
0.65

0.48
0.775
0.85
0.77
0.63
0.44

Efficiency
No Ground

Plane
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0.647
0.779
0.847
0.829
0.696
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0.776
0.835
0.776
0.63
0.413
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Proposal for a Tunable Millimeter Wave

Molecular Oscillator and Amplifier*

J. R. SINGER~

Summary—An atomic beam apparatussuitable for a millimeter
wave generator is theoretically discussed. The beam consists of
atomshaving a net magneticmoment. The upperand lower Zeemsn
levels of the atomic beamin a magnetic field are spatially separated
by an inhomogeneousmagneticfield. The upper state atoms enter a
cavity where transitions occurat a frequencydetermined by a static
magnetic field. The resonant frequency of the cavity is set at the
transition frequency. The positive feedback of the cavity allows
operationasanoscillator. Someof the more important parametersfor
oscillator operation are evaluated.The upper frequency limit is de-
termined primarily by the resonant structure design.

INTRODUCTION

T HE ammonia gas maser invented by Gordon,
Zeiger and Townesl shows considerable promise

L as a frequency standard and as a narrow band
amplifier. One limitation is the fixed frequency opera-
tion which is determined by the natural transition fre-

* Manuscript received by the PGMTT, September 30, 1958; re-
vised manuscript received, December 8, 1958. This work was sup-
ported by the Faculty Res. Corn., University of California, and the
U. S. Air Force under Contract No. AF 49(638)-102 monitored by the
A. F. Office of Sci. Res., Air Res. and Dev. Command.

~ Electronics Res. Lab., Univ. California, Berkeley, Calif.
‘J. P. Gordon, H. J. Zeiger and C. H. Townes, “The maser,”

Phys. Rev., vol. 99, pp. 1264-1274; August 15, 1955.

quencies of the NH3 molecule. An extension of the
molecular beam technique which permits operation of
a molecular oscillator amplifier in the mm wave region
with a power output of the order of the ammonia maser
is suggested in this paper.

The present scheme uses a Stern-Gerlach2 type of
molecular beam arrangement for achieving a polarized
beam of atoms. The atoms in the lower energy state may
be readily removed from the beam since they are spa-
tially separated. The upper state atoms then adiabatic-
ally enter a homogeneous magnetic field region where
they are subjected to an RF field polarized in the ap-
propriate direction to induce atomic transitions. In-
duced transitions are always coherent in phase and am-
plification of RF is achieved if the rate of transitions
times the energy from each transition exceeds the RF
power input and the system losses. The system may be
used as an oscillator since spontaneous emission will in-
duce further transitions by use of a high Q structure

2 W. Gerlach and O. Stern, “Der Experimentelle Nachweiss des
Magnetischen Moments des Silberatoms, ” ,Zeit. .PhysM, vol. 8, pp.
110–1 12; December, 1921.


